Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Reprod Biol Endocrinol ; 19(1): 52, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33794911

RESUMO

BACKGROUND: Blood coagulation has been associated with ovulation and female infertility. In this study, the expression of the tissue factor system was examined during ovulation in immature rats; the correlation between tissue factor and ovarian hyperstimulation syndrome (OHSS) was evaluated both in rats and human follicular fluids. METHODS: Ovaries were obtained at various times after human chorionic gonadotropin (hCG) injection to investigate the expression of tissue factor system. Expression levels of ovarian tissue factor, tissue factor pathway inhibitor (Tfpi)-1 and Tfpi-2 genes and proteins were determined by real-time quantitative polymerase chain reaction (qPCR), and Western blot and immunofluorescence analyses, respectively. Expression levels of tissue factor system were also investigated in ovaries of OHSS-induced rats and in follicular fluid of infertile women. RESULTS: The expression of tissue factor in the preovulatory follicles was stimulated by hCG, reaching a maximum at 6 h. Tissue factor was expressed in the oocytes and the preovulatory follicles. Tfpi-2 mRNA levels were mainly increased by hCG in the granulosa cells whereas the mRNA levels of Tfpi-1 were decreased by hCG. Human CG-stimulated tissue factor expression was inhibited by the progesterone receptor antagonist. The increase in Tfpi-2 expression by hCG was decreased by the proliferator-activated receptor γ (PPARγ) antagonist. Decreased expression of the tissue factor was detected in OHSS-induced rats. Interestingly, the tissue factor concentrations in the follicular fluids of women undergoing in vitro fertilization were correlated with pregnancy but not with OHSS. CONCLUSIONS: Collectively, the results indicate that tissue factor and Tfpi-2 expression is stimulated during the ovulatory process in rats; moreover, a correlation exists between the levels of tissue factor and OHSS in rats but not in humans.


Assuntos
Glicoproteínas/biossíntese , Síndrome de Hiperestimulação Ovariana/metabolismo , Ovulação/metabolismo , Tromboplastina/biossíntese , Animais , Feminino , Expressão Gênica , Glicoproteínas/genética , Humanos , Síndrome de Hiperestimulação Ovariana/genética , Ratos , Ratos Sprague-Dawley
2.
Reprod Fertil Dev ; 32(8): 783-791, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32389179

RESUMO

Peroxiredoxin 2 (Prdx2), an antioxidant enzyme, is expressed in the ovary during the ovulatory process. The aim of the present study was to examine the physiological role of Prdx2 during ovulation using Prdx2-knockout mice and mouse cumulus-oocyte complex (COC) from WT mice. Two days of treatment of immature mice (21-23 days old) with equine chorionic gonadotrophin and followed by treatment with human chorionic gonadotrophin greatly impaired cumulus expansion and oocyte maturation in Prdx2-knockout but not wild-type mice. Treatment of COCs in culture with conoidin A (50µM), a 2-cys Prdx inhibitor, abolished epiregulin (EPI)-induced cumulus expansion. Conoidin A treatment also inhibited EPI-stimulated signal molecules, including signal transducer and activator of transcription-3, AKT and mitogen-activated protein kinase 1/2. Conoidin A treatment also reduced the gene expression of EPI-stimulated expansion-inducing factors (hyaluronan synthase 2 (Has2), pentraxin 3 (Ptx3), TNF-α induced protein 6 (Tnfaip6) and prostaglandin-endoperoxide synthase 2 (Ptgs2)) and oocyte-derived factors (growth differentiation factor 9 (Gdf9) and bone morphogenetic protein 15 (Bmp15)). Furthermore, conoidin A inhibited EPI-induced oocyte maturation and the activity of connexins 43 and 37. Together, these results demonstrate that Prdx2 plays a role in regulating cumulus expansion and oocyte maturation during the ovulatory process in mice, probably by modulating epidermal growth factor receptor signalling.


Assuntos
Células do Cúmulo/fisiologia , Oócitos/crescimento & desenvolvimento , Ovulação/fisiologia , Peroxirredoxinas/fisiologia , Animais , Células Cultivadas , Gonadotropina Coriônica/farmacologia , Células do Cúmulo/efeitos dos fármacos , Feminino , Gonadotropinas Equinas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oócitos/efeitos dos fármacos , Peroxirredoxinas/antagonistas & inibidores , Peroxirredoxinas/deficiência , Quinoxalinas/farmacologia
3.
Endocr J ; 64(8): 797-805, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28701684

RESUMO

The potent androgen 5α-dihydrotestosterone is metabolized to the weak androgen 5α-androstane-3α, 17ß-diol (3α-diol) by the enzyme aldo-keto reductase family 1, member C14 (Akr1c14) in rodents. The purpose of the present study was to investigate the regulation of Akr1c14 expression during the ovulatory process in rat ovaries. Northern blot analysis revealed that treatment of immature rats with equine chorionic gonadotropin resulted in lowered Akr1c14 expression, whereas subsequent treatment with human chorionic gonadotropin (hCG) increased ovarian Akr1c14 expression within 3 h. In situ hybridization analysis showed that Akr1c14 mRNA was localized in granulosa cells of growing follicles before hCG treatment, but it was also expressed in granulosa cells of preovulatory follicles after hCG treatment. Akr1c14 protein expression increased after 6 h of hCG treatment and was sustained at high levels until 12 h. The levels of 3α-diol in preovulatory follicles isolated from ovaries in vivo were fluctuated by hCG treatment; decreased at 6 h and increased at 9 h. Human CG-induced Akr1c14 expression was suppressed by treatment with the progesterone receptor antagonist RU486, but not with the cyclooxygenase inhibitor indomethacin. Taken together, these findings demonstrate the induction of Akr1c14 by hCG in granulosa cells of rat preovulatory follicles that was regulated by progesterone receptor antagonist.


Assuntos
Aldo-Ceto Redutases/metabolismo , Folículo Ovariano/metabolismo , Ovário/metabolismo , Ovulação/metabolismo , Aldo-Ceto Redutases/genética , Animais , Gonadotropina Coriônica/farmacologia , Feminino , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Folículo Ovariano/efeitos dos fármacos , Ovário/efeitos dos fármacos , Ovulação/efeitos dos fármacos , Ovulação/genética , Ratos , Ratos Sprague-Dawley
4.
Biochem Biophys Res Commun ; 489(2): 193-199, 2017 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-28552528

RESUMO

Peroxiredoxins (Prxs) are highly conserved antioxidant enzymes and are implicated in multiple biological processes; however, their function in oocyte meiosis has not been studied. Here we show that inhibition of Prx I and II results in spindle defects, chromosome disorganization, and impaired polarization in mouse oocytes. Prx I was specifically localized at the spindle, whereas Prx II was enriched at the oocyte cortex and chromosomes. Inhibition of Prx activity with conoidin A disturbed assembly of the microtubule organizing center (MTOC) through Aurora A regulation, leading to defects in spindle formation. Moreover, conoidin A impaired actin filament and cortical granule (CG) distribution, disrupting actin cap and CG formation, respectively. Conoidin A also increased DNA damage without significantly increasing reactive oxygen species (ROS) levels, suggesting that the effects of conoidin A on meiotic maturation are not likely associated with ROS scavenging pathways. Therefore, our data suggest that Prxs are required for spindle assembly, chromosome organization, and polarization during meiotic maturation.


Assuntos
Polaridade Celular/efeitos dos fármacos , Cromossomos de Mamíferos/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Peroxirredoxinas/farmacologia , Fuso Acromático/efeitos dos fármacos , Animais , Células Cultivadas , Cromossomos de Mamíferos/metabolismo , Relação Dose-Resposta a Droga , Feminino , Meiose/efeitos dos fármacos , Camundongos , Oócitos/metabolismo , Peroxirredoxinas/genética , Quinoxalinas/farmacologia , Fuso Acromático/metabolismo , Relação Estrutura-Atividade
5.
Reprod Fertil Dev ; 29(12): 2437-2445, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28521851

RESUMO

The aim of the present study was to examine the regulation of interleukin (IL)-11 expression, as well as the role of IL-11, during ovulation in gonadotropin-primed immature rats. Injection of equine chorionic gonadotropin (eCG), followed by human CG (hCG) to induce superovulation stimulated expression of the Il11 gene in theca cells within 6h, as revealed by northern blot and in situ hybridisation analyses. Real-time reverse transcription-polymerase chain reaction analysis showed that the IL-11 receptor, α subunit gene was expressed in granulosa and theca cells and that injection of hCG had no effect on its expression. IL-11 protein expression was stimulated in theca cells by hCG. LH-stimulated increases in Il11 mRNA levels in cultured preovulatory follicles were inhibited by protein kinase A and mitogen-activated protein kinase kinase inhibitors. Toll-like receptor (TLR) 2 and TLR4 were detected in preovulatory follicles, and the TLR4 ligand lipopolysaccharide, but not the TLR2 ligand Pam3Cys, increased Il11 mRNA levels in theca cells, but not in granulosa cells. Treatment of preovulatory follicles with IL-11 stimulated progesterone production and steroidogenic acute regulatory protein (Star) gene expression. Together, these results indicate that IL-11 in theca cells is stimulated by mitogen-activated protein kinase signalling and TLR4 activation, and increases progesterone production during ovulation.


Assuntos
Regulação da Expressão Gênica , Interleucina-11/metabolismo , Folículo Ovariano/metabolismo , Ovário/metabolismo , Ovulação/metabolismo , Animais , Gonadotropina Coriônica/farmacologia , Feminino , Expressão Gênica/efeitos dos fármacos , Gonadotropinas Equinas/farmacologia , Interleucina-11/genética , Folículo Ovariano/efeitos dos fármacos , Ovário/efeitos dos fármacos , Ovulação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
6.
Endocr J ; 64(6): 605-612, 2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28442641

RESUMO

Uridine diphosphate-glucuronosyltransferase 2B15 (UGT2B15) conjugates 5α-androstane-3α, 17ß-diol (3α-diol) to 3α-diol glucuronide (3α-diol G) in steroid target tissues. The present study investigated the regulation of UGT2B15 expression during the ovulatory process in the rat. Real-time PCR analysis revealed that treatment of immature rats with equine chorionic gonadotropin followed by human chorionic gonadotropin transiently stimulated UGT2B15 gene expression in granulosa cells of preovulatory follicles within 6 h. The progesterone receptor antagonist RU486 suppressed the gonadotropin-induced UGT2B15 expression. The expression of UGT2B15 and the levels of 3α-diol G were transiently increased by luteinizing hormone (LH) treatment in cultured preovulatory follicles. The LH-stimulated UGT2B15 mRNA level in cultured preovulatory follicles was inhibited by inhibitors of adenylyl cyclase, phosphoinositide 3-kinase and mitogen-activated protein kinase. Furthermore, a vitamin D receptor agonist (calcitriol) suppressed the LH-stimulated UGT2B15 expression in a dose-dependent manner. Taken together, these results indicate that gonadotropins transiently stimulate UGT2B15 expression and activity in preovulatory follicles, and UGT2B15 mRNA levels are regulated by the progesterone receptor and vitamin D receptor.


Assuntos
Glucuronosiltransferase/metabolismo , Gonadotropinas/metabolismo , Células da Granulosa/metabolismo , Ovulação/metabolismo , Receptores de Progesterona/agonistas , Transdução de Sinais , Animais , Células Cultivadas , Gonadotropina Coriônica/farmacologia , Indução Enzimática/efeitos dos fármacos , Feminino , Fármacos para a Fertilidade Feminina/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Glucuronosiltransferase/antagonistas & inibidores , Glucuronosiltransferase/química , Glucuronosiltransferase/genética , Células da Granulosa/citologia , Células da Granulosa/efeitos dos fármacos , Hormônio Luteinizante/farmacologia , Luteolíticos/farmacologia , Mifepristona/farmacologia , Ovulação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Ratos Sprague-Dawley , Receptores de Calcitriol/agonistas , Receptores de Calcitriol/antagonistas & inibidores , Receptores de Calcitriol/metabolismo , Receptores de Progesterona/antagonistas & inibidores , Receptores de Progesterona/metabolismo , Transdução de Sinais/efeitos dos fármacos , Técnicas de Cultura de Tecidos
7.
Genes Dev ; 29(22): 2377-90, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26588990

RESUMO

Alternative polyadenylation (APA) is widespread in neuronal development and activity-mediated neural plasticity. However, the underlying molecular mechanisms are largely unknown. We used systematic genetic studies and genome-wide surveys of the transcriptional landscape to identify a context-dependent regulatory pathway controlling APA in the Caenorhabditis elegans nervous system. Loss of function in ssup-72, a Ser5 phosphatase for the RNA polymerase II (Pol II) C-terminal domain (CTD), dampens transcription termination at a strong intronic polyadenylation site (PAS) in unc-44/ankyrin yet promotes termination at the weak intronic PAS of the MAP kinase dlk-1. A nuclear protein, SYDN-1, which regulates neuronal development, antagonizes the function of SSUP-72 and several nuclear polyadenylation factors. This regulatory pathway allows the production of a neuron-specific isoform of unc-44 and an inhibitory isoform of dlk-1. Dysregulation of the unc-44 and dlk-1 mRNA isoforms in sydn-1 mutants impairs neuronal development. Deleting the intronic PAS of unc-44 results in increased pre-mRNA processing of neuronal ankyrin and suppresses sydn-1 mutants. These results reveal a mechanism by which regulation of CTD phosphorylation controls coding region APA in the nervous system.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/crescimento & desenvolvimento , Fosfoproteínas Fosfatases/metabolismo , Animais , Anquirinas/genética , Anquirinas/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Regulação da Expressão Gênica no Desenvolvimento , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Mutação , Neurônios/enzimologia , Fosfoproteínas Fosfatases/genética , Poliadenilação , Ligação Proteica
8.
Biol Reprod ; 92(1): 20, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25429090

RESUMO

Ovulation resembles the inflammatory response. The purpose of the present study was to examine the expression and role of type I interferons (IFNs) Ifnalpha and Ifnbeta in mouse ovaries during the process of ovulation. An in vivo injection of equine chorionic gonadotropin (CG)-human CG (hCG) stimulated Ifnalpha and Ifnbeta mRNA in cumulus-oocyte complexes (COCs) within 6 h. Type I IFN receptor (Ifnar1 and Ifnar2) genes were also expressed in preovulatory follicles without a change by hCG. Immunofluorescent study revealed the expression of protein signals of Ifnalpha, Ifnbeta, and Ifnar1 in cumulus cells. Treatment of COCs with Ifnalpha or Ifnbeta in vitro induced cumulus expansion that was comparable to that mediated by epiregulin. In cultured COCs, the levels of Ifnalpha and Ifnbeta mRNA increased by epiregulin and follicle-stimulating hormone, but not by prostaglandin E2. Ifnalpha and Ifnbeta activated multiple signaling events (signal transducer and activator of transcription-1/3, Akt, and mitogen-activated protein kinase 1/2) and stimulated the expression of genes known to impact COC expansion (Has2, Ptx3, Tnfaip6, and Ptgs2). Interestingly, treatment of COCs with Toll-like receptor (TLR) 2 and TLR4 ligands (lipopolysaccharides, Pam3Cys, and hyaluronan fragments) increased Ifnalpha and Ifnbeta mRNA, while coculture with anti-TLR2/4 neutralizing antibody abolished these effects. Taken together, these results demonstrate that the type I IFN system is operating in mouse cumulus cells and plays a role in the induction of cumulus expansion during the ovulatory process in mice.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células do Cúmulo/metabolismo , Células do Cúmulo/fisiologia , Interferon Tipo I/metabolismo , Interferon Tipo I/farmacologia , Animais , Proliferação de Células/genética , Células Cultivadas , Gonadotropina Coriônica/farmacologia , Células do Cúmulo/efeitos dos fármacos , Feminino , Expressão Gênica/efeitos dos fármacos , Gonadotropinas Equinas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Ovulação/fisiologia
9.
Mol Reprod Dev ; 80(12): 988-99, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24038581

RESUMO

Mouse testis actin-like proteins 1 and 2 (mTact1 and mTact2), which are expressed in murine haploid germ cells, have been described previously. Here, we report the cloning and characterization of a third actin-like protein from rat, rat testis actin-like protein 3 (rTact3). The complete cDNA of the rTact3 gene was approximately 3.7 kb in length, and its corresponding amino acid sequence consisted of 1219 amino acids. The rTact3 gene lacks introns, similar to mTact1 and mTact2. The 356 C-terminal amino acids of rTact3 showed 43% homology with mTact1, whereas the 863 N-terminal amino acids did not show any significant homology. Northern blot analysis revealed that rTact3 mRNA was expressed only in adult rat testes and not during the prepubescent stage. In situ hybridization revealed that rTact3 was expressed exclusively during round and elongated spermatids maturation stages in rat testes. Immunohistochemical experiments using antibodies raised against a synthetic peptide showed that the expression of the rTact3 protein was also restricted in round and elongated spermatids, specifically in the head and acrosome of mature rat sperm. The 5'-flanking region of the mTact3 gene was found to contain a TATA-box motif as well as two putative CREB/c-Jun and five C/EBP motifs. mTact3 promoter activity was enhanced in a dose-dependent manner by the transfection of CREB, c-Jun, or C/EBP in NIH3T3 cells. These results suggest that Tact3 proteins might play an important role in rodent germ-cell development.


Assuntos
Acrossomo/metabolismo , Actinas/genética , Espermátides/metabolismo , Espermatogênese/genética , Células 3T3 , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas Estimuladoras de Ligação a CCAAT/genética , Linhagem Celular , Clonagem Molecular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Genes jun/genética , Masculino , Camundongos , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , RNA Mensageiro/biossíntese , Coelhos , Ratos , Ratos Sprague-Dawley , Homologia de Sequência de Aminoácidos , Testículo/embriologia
10.
PLoS Genet ; 9(3): e1003392, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23516384

RESUMO

Piwi-interacting RNAs (piRNAs) fulfill a critical, conserved role in defending the genome against foreign genetic elements. In many organisms, piRNAs appear to be derived from processing of a long, polycistronic RNA precursor. Here, we establish that each Caenorhabditis elegans piRNA represents a tiny, autonomous transcriptional unit. Remarkably, the minimal C. elegans piRNA cassette requires only a 21 nucleotide (nt) piRNA sequence and an ∼50 nt upstream motif with limited genomic context for expression. Combining computational analyses with a novel, in vivo transgenic system, we demonstrate that this upstream motif is necessary for independent expression of a germline-enriched, Piwi-dependent piRNA. We further show that a single nucleotide position within this motif directs differential germline enrichment. Accordingly, over 70% of C. elegans piRNAs are selectively expressed in male or female germline, and comparison of the genes they target suggests that these two populations have evolved independently. Together, our results indicate that C. elegans piRNA upstream motifs act as independent promoters to specify which sequences are expressed as piRNAs, how abundantly they are expressed, and in what germline. As the genome encodes well over 15,000 unique piRNA sequences, our study reveals that the number of transcriptional units encoding piRNAs rivals the number of mRNA coding genes in the C. elegans genome.


Assuntos
Células Germinativas/metabolismo , Motivos de Nucleotídeos/genética , RNA Interferente Pequeno , Sequências Reguladoras de Ácido Ribonucleico/genética , Animais , Caenorhabditis elegans/genética , Feminino , Regulação da Expressão Gênica , Genoma , Masculino , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
11.
Mol Cell Endocrinol ; 367(1-2): 31-40, 2013 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-23267836

RESUMO

The B-cell translocation gene 2 (Btg2) is an anti-proliferative tumor suppressor gene that behaves as a transcriptional regulator. The present study investigated gonadotropin induction of Btg2 in the rat ovary and the mechanism of Btg2 action as a partner of mitochondrial protein adenine nucleotide translocase 2 (Ant2). Transient induction of Btg2 as well as Btg1 mRNA levels by LH/hCG was observed in ovarian granulosa cells. Btg2 protein levels were also stimulated by LH/hCG. LH-induced gene expression of Btg2 required ERK signal pathway. Studies of deletion mutants in HeLa cells showed that deletion of Btg2 C-terminus (Btg2/ΔC) abolished the interaction with Ant2. In fact, the expression levels of Btg2/ΔC construct were decreased in mitochondrial fraction. Btg2 was also expressed in mitochondria and interacted with Ant2 in preovulatory granulosa cells. Interestingly, a Btg2/ΔC construct inhibited an action of Btg2 wild-type on ATP and H(2)O(2) production. These findings demonstrate the gonadotropin stimulation of Btg2 in the ovary and, the physical interaction of Btg2 with Ant2 in mitochondria.


Assuntos
Translocador 2 do Nucleotídeo Adenina/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Mitocôndrias/enzimologia , Ovário/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Translocador 2 do Nucleotídeo Adenina/genética , Trifosfato de Adenosina/metabolismo , Animais , Gonadotropina Coriônica/farmacologia , Feminino , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Células HeLa , Humanos , Peróxido de Hidrogênio/metabolismo , Proteínas Imediatamente Precoces/química , Proteínas Imediatamente Precoces/genética , Hormônio Luteinizante/farmacologia , Mitocôndrias/efeitos dos fármacos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Ovário/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Ovinos , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética
12.
Endocrinology ; 153(11): 5512-21, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22989627

RESUMO

Reactive oxygen species are involved in ovulation. The aim of this study was to examine gonadotropin regulation of antioxidant enzyme sulfiredoxin (Srx) and peroxiredoxin 2 (PRDX2) expressions and modification during the ovulatory process in rats. Administration of antioxidants in vivo reduced ovulation rate and cumulus expansion. LH treatment increased H(2)O(2) levels within 15 min, which, in turn, induced Srx gene expression in cultured preovulatory follicles. Treatment of preovulatory follicles with catalase suppressed the stimulatory effect of LH on Akt phosphorylation. LH- or H(2)O(2)-stimulated Srx mRNA levels were suppressed by inhibitors of antioxidant agents and MAPK kinase. An in vivo injection of equine chorionic gonadotropin-human chorionic gonadotropin (hCG) stimulated Srx mRNA within 1 h in granulosa but not thecal cells of preovulatory follicles. Srx protein levels were stimulated from 3 h post-hCG injection. Immunofluorescence analysis revealed that oocytes expressed the Srx protein. Furthermore, hCG treatment increased Srx expression in mural granulosa, theca and cumulus cells, but the Srx protein was not detected in corpora lutea. Gene expression of PRDX2, identified as an Srx-dependent modified enzyme, was stimulated by gonadotropins. In situ hybridization analysis demonstrated that PRDX2 mRNA was detected in oocytes and theca cells as well as granulosa cells of some antral and preovulatory follicles. High levels of PRDX2 mRNA were detected in corpora lutea. Total levels of PRDX2 protein were not changed by gonadotropins. However, levels of hyperoxidized PRDX2 increased within 2-3 h after the hCG injection. Taken together, gonadotropin stimulation of Srx expression and PRDX2 modification in the ovary suggest the existence of an antioxidant system to maintain H(2)O(2) production and elimination during the periovulatory period.


Assuntos
Peróxido de Hidrogênio/metabolismo , Hormônio Luteinizante/farmacologia , Ovário/metabolismo , Ovulação/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Peroxirredoxinas/metabolismo , Animais , Feminino , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Ovário/efeitos dos fármacos , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Peroxirredoxinas/genética , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
13.
Clin Exp Reprod Med ; 38(1): 18-23, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22384413

RESUMO

OBJECTIVE: Peroxiredoxins (Prxs) play an important role in regulating cellular differentiation and proliferation in several types of mammalian cells. This report examined the expression of Prx isotype I in the rat ovary after hormone treatment. METHODS: Immature rats were injected with 10 IU of pregnant mare's serum gonadotropin (PMSG) to induce the growth of multiple preovulatory follicles and 10 IU of human chorionic gonadotropin (hCG) to induce ovulation. Immature rats were also treated with diethylstilbestrol (DES), an estrogen analogue, to induce the growth of multiple immature follicles. Northern blot analysis was performed to detect gene expression. Cell-type specific localization of Prx I mRNA were detected by in situ hybridization analysis. RESULTS: During follicle development, ovarian Prx I gene expression was detected in 3-day-old rats and had increased in 21-day-old rats. The levels of Prx I mRNA slightly declined one to two days following treatment with DES. A gradual increase in Prx I gene expression was observed in ovaries obtained from PMSG-treated immature rats. Furthermore, hCG treatment of PMSG-primed rats resulted in a gradual stimulation of Prx I mRNA levels by 24 hours (2.1-fold increase) following treatment, which remained high until 72 hours following treatment. In situ hybridization analysis revealed the expression of the Prx I gene in the granulosa cells of PMSG-primed ovaries and in the corpora lutea of ovaries stimulated with hCG for 72 hours. CONCLUSION: These results demonstrate the gonadotropin and granulosa cell-specific stimulation of Prx I gene expression, suggesting its role as a local regulator of follicle development.

14.
Endocr J ; 57(10): 863-71, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20724799

RESUMO

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) reduces ovulation rate in rats. The present study was to investigate whether TCDD alters the progression of cell cycle, and thus resulting in the blockade of ovulation in gonadotropin-primed, immature rats. The ovulation rate and ovarian weight were reduced in intact rats given TCDD (32 µg/kg BW in corn oil) by gavage one day before pregnant mare's serum gonadotropin (PMSG; 5 IU/rat) injection. Flow cytometry demonstrated that the percentage of granulosa cells in S-phase was increased at 24 h following PMSG treatment, but declined at 8 h following hCG treatment in corn oil-treated rats. Interestingly, the number of S-phase cells in TCDD-treated rats was reduced 24 and 48 h following PMSG treatment. TCDD, however, increased the percentage of cells in G2/M-phase at 24 h following PMSG treatment. TCDD inhibited the mRNA levels of Cdk2 at 0 h and 24 h, and cyclin D2 at 24 h and 48 h following PMSG treatment. Protein levels of aryl hydrocarbon receptor in granulosa cells were elevated in TCDD-treated rats at 12 h and 24 h following PMSG treatment. The present study indicates that TCDD reduces S-phase cells and inhibits levels of Cdk2 and cyclin D2 at 24 h following PMSG treatment, implying the ovulation-inhibiting action of TCDD may be exerted through the attenuation of cell cycle progression via AhR-mediated cascade.


Assuntos
Ciclo Celular/efeitos dos fármacos , Disruptores Endócrinos/farmacologia , Células da Granulosa/efeitos dos fármacos , Inibidores do Crescimento/farmacologia , Inibição da Ovulação/efeitos dos fármacos , Dibenzodioxinas Policloradas/farmacologia , Animais , Ciclina D2/genética , Ciclina D2/metabolismo , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células da Granulosa/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Ovário/efeitos dos fármacos , Ovário/crescimento & desenvolvimento , Indução da Ovulação , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Hidrocarboneto Arílico/metabolismo , Substâncias para o Controle da Reprodução/farmacologia , Fatores de Tempo
15.
J Biol Chem ; 285(29): 22360-9, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20472563

RESUMO

ARR19 (androgen receptor corepressor-19 kDa), a leucine-rich protein whose expression is down-regulated by luteinizing hormone and cAMP, is differentially expressed during the development of Leydig cells and inhibits testicular steroidogenesis by reducing the expression of steroidogenic enzymes. However, the molecular events behind the suppression of testicular steroidogenesis are unknown. In the present study, we demonstrate that ARR19 inhibits the transactivation of orphan nuclear receptor Nur77, which is one of the major transcription factors that regulate the expression of steroidogenic enzyme genes in Leydig cells. ARR19 physically interacts with Nur77 and suppresses Nur77-induced promoter activity of steroidogenic enzyme genes including StAR, P450c17, and 3beta-HSD in Leydig cells. Transient transfection and chromatin immunoprecipitation assays revealed that ARR19-mediated reduced expression of steroidogenic enzyme genes was likely due to the interference of SRC-1 recruitment to Nur77 protein on the promoter of steroidogenic enzyme genes. These findings suggest that ARR19 acts as a novel coregulator of Nur77, in turn regulating Nur77-induced testicular steroidogenesis, and may play an important role in the development and function of testicular Leydig cells.


Assuntos
Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Proteínas Repressoras/metabolismo , Esteroides/biossíntese , Testículo/metabolismo , Ativação Transcricional/genética , Adenoviridae/metabolismo , Animais , Ligação Competitiva , Núcleo Celular/metabolismo , Células Intersticiais do Testículo/citologia , Células Intersticiais do Testículo/metabolismo , Proteínas com Domínio MARVEL , Masculino , Proteínas de Membrana , Camundongos , Coativador 1 de Receptor Nuclear/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Repressoras/química , Esteroide 17-alfa-Hidroxilase/genética , Esteroide 17-alfa-Hidroxilase/metabolismo , Testículo/citologia
16.
Endocr J ; 57(2): 127-34, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19926922

RESUMO

The present study examined the gonadotropin regulation of pituitary adenylate cyclase-activating polypeptide (PACAP) and PACAP type I receptor (PAC(1)-R) expression, and its role in progesterone production in the human luteinized granulosa cells. The stimulation of both PACAP and PAC(1)-R mRNA levels by LH was detected using a competitive reverse transcription-polymerase chain reaction (RT-PCR). PACAP transcript was stimulated by LH reaching maximum levels at 12 hours in a dose dependent manner. LH treatment also stimulated PAC(1)-R mRNA levels within 24 hours. Addition of PACAP-38 (10(-7) M) as well as LH significantly stimulated progesterone production during 48 hours culture. Furthermore, co-treatment with PACAP antagonist partially inhibited LH-stimulated progesterone production. Treatment with vasoactive intestinal peptide, however, did not affect progesterone production. Taken together, the present study demonstrates that LH causes a transient stimulation of PACAP and PAC(1)-R expression and that PACAP stimulates progesterone production in the human luteinized granulosa cells, suggesting a possible role of PACAP as a local ovarian regulator in luteinization.


Assuntos
Células da Granulosa/metabolismo , Hormônio Luteinizante/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Progesterona/biossíntese , Adulto , Feminino , Células da Granulosa/efeitos dos fármacos , Humanos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Progesterona/metabolismo , RNA Mensageiro/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima , Peptídeo Intestinal Vasoativo/farmacologia
17.
J Interferon Cytokine Res ; 29(12): 801-8, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19929576

RESUMO

A surge in luteinizing hormone (LH) triggers physiological changes within the ovarian follicles, including reprogramming to induce terminal differentiation of the granulosa cells (GCs). Cytokines are members of a large regulatory network that resides in the ovaries and are involved in the regulation of steroidogenesis and gamete production. Recently we found that interferon-alpha (IFN-alpha) was overexpressed in LH-treated preovulatory GCs, as determined by a microarray analysis. In this study, we evaluated the expression of IFN-alpha and its role in the differentiation of rat preovulatory GCs. Rat GCs were treated with LH in vitro or human chorionic gonadotropin (hCG) in vivo, both of which are well-known inducers of differentiation, and IFN-alpha production and cell differentiation were determined. Stimulation of rat primary GCs with LH or hCG increased expression of IFN-alpha. LH treatment led to increased phosphorylation of PI3-K and extracellular signal-regulated kinase (ERK), and specific inhibitors for PI3-K and ERK suppressed the LH-induced IFN-alpha expression in preovulatory GCs. Furthermore, treatment with anti-rat IFN-alpha blocking antibody delayed the LH-induced differentiation of GCs and suppressed the expression of ovulation-related genes, including progesterone receptor (PR) and steroidogenic acute regulatory protein (StAR). These results indicate that LH induces IFN-alpha expression in preovulatory GCs via a PI3-K/ERK signaling pathway and that interferon-alpha production may be involved in the LH-induced differentiation of preovulatory GCs in rats.


Assuntos
Diferenciação Celular , Células da Granulosa/citologia , Interferon-alfa/metabolismo , Ovulação/metabolismo , Animais , Anticorpos Neutralizantes/farmacologia , Gonadotropina Coriônica/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Humanos , Interferon-alfa/agonistas , Interferon-alfa/antagonistas & inibidores , Hormônio Luteinizante/farmacologia , Ovulação/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Progesterona/antagonistas & inibidores , Receptores de Progesterona/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
18.
Life Sci ; 85(3-4): 153-60, 2009 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-19467246

RESUMO

AIMS: The aim of the present study was to characterize genes regulated by protein kinase C PKCzeta inhibitor in the preovulatory granulosa cells following LH stimulation in the rat ovary. MAIN METHODS: Annealing control primer (ACP)-based polymerase chain reaction (PCR) method was used to identify differentially expressed genes in granulosa cells of preovulatory follicles cultured in the presence of luteinizing hormone (LH) and myristoylated PKCzeta pseudosubstrate peptide or a similarly sized control peptide. KEY FINDINGS: Among the 16 genes identified, five (testin, glypican-4, retrovirus SC1, aminolevulinic acid synthase 1 and serum-inducible kinase) experienced rapid and transient stimulation of gene expression upon exposure to human chorionic gonadotropin (hCG) in the ovary of immature rats primed with pregnant mare's serum gonadotropin (PMSG). In situ hybridization analysis revealed that hCG administration induced expression of these five genes in granulosa cells of preovulatory follicles. The Western analysis showed that the protein levels of testin and serum-inducible kinase were also increased by hCG. Expression of the eleven remaining genes in the ovary remained high at 24-72 h following hCG treatment. SIGNIFICANCE: The present data demonstrate the gonadotropin stimulation of genes differentially expressed by PKCzeta inhibitor, implicating that PKCzeta pathway possibly plays a role in controlling the ovulation process.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Células da Granulosa/efeitos dos fármacos , Hormônio Luteinizante/metabolismo , Chaperonas Moleculares/antagonistas & inibidores , Ovulação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Animais , Gonadotropina Coriônica/metabolismo , Gonadotropina Coriônica/farmacologia , Feminino , Perfilação da Expressão Gênica , Células da Granulosa/enzimologia , Humanos , Hormônio Luteinizante/farmacologia , Ovulação/genética , Ovulação/metabolismo , Ratos
19.
Reproduction ; 138(2): 329-39, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19433502

RESUMO

The expression of hedgehog (Hh) genes, their receptor, and the co-receptor in mice, rat, and bovine ovaries were investigated. RT-PCR of ovarian transcripts in mice showed amplification of transcripts for Indian (Ihh) and desert (Dhh) Hh, patched 1 (Ptch1), and smoothened (Smo) genes. Semi-quantitative RT-PCR and northern blot analyses showed that whole ovarian Ihh and Dhh transcripts decreased 4-24 h after hCG versus 0-48 h after pregnant mares serum gonadotrophin treatment in mice, whereas mouse Ptch1 and Smo transcripts were expressed throughout the gonadotropin treatments. Quantitative real-time RT-PCR (qRT-PCR) revealed that the expression of the Hh-patched signaling system with Ihh mRNA abundance in granulosa cells was greater, whereas Smo and Ptch1 mRNA abundance was less in theca cells of small versus large follicles of cattle. In cultured rat and bovine theca-interstitial cells, qRT-PCR analyses revealed that the abundance of Gli1 and Ptch1 mRNAs were increased (P<0.05) with sonic hedgehog (SHH) treatment. Additional studies using cultured bovine theca cells indicated that SHH induces proliferation and androstenedione production. IGF1 decreased Ihh mRNA abundance in bovine granulosa cells. The expression and regulation of Ihh transcripts in granulosa cells and Ptch1 mRNA in theca cells suggest a potential paracrine role of this system in bovine follicular development. This study illustrates for the first time Hh activation of Gli1 transcriptional factor in theca cells and its stimulation of theca cell proliferation and androgen biosynthesis.


Assuntos
Proteínas Hedgehog/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/fisiologia , Células Tecais/metabolismo , Androstenodiona/biossíntese , Animais , Bovinos , Células Cultivadas , Feminino , Expressão Gênica/efeitos dos fármacos , Gonadotropinas Equinas/farmacologia , Proteínas Hedgehog/análise , Proteínas Hedgehog/genética , Humanos , Insulina/farmacologia , Fator de Crescimento Insulin-Like I/farmacologia , Hormônio Luteinizante/farmacologia , Camundongos , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Receptores Patched , Receptor Patched-1 , Progesterona/biossíntese , RNA Mensageiro/análise , Ratos , Receptores de Superfície Celular/análise , Receptores de Superfície Celular/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptor Smoothened , Transativadores/genética , Transativadores/metabolismo , Proteína GLI1 em Dedos de Zinco
20.
Endocrinology ; 150(8): 3800-6, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19372205

RESUMO

Ectodermal neural cortex (ENC) 1, a member of the kelch family of genes, is an actin-binding protein and plays a pivotal role in neuronal and adipocyte differentiation. The present study was designed to examine the gonadotropin regulation and action of ENC1 during the ovulatory process in immature rats. The levels of ENC1 mRNA and protein were stimulated by LH/human chorionic gonadotropin (hCG) within 3 h both in vivo and in vitro. In situ hybridization analysis revealed that ENC1 mRNA was localized not only in theca/interstitial cells but also in granulosa cells of preovulatory follicles but not of growing follicles in pregnant mare's serum gonadotropin/hCG-treated ovaries. LH-induced ENC1 expression was suppressed by a high dose of protein kinase C inhibitor RO 31-8220 (10 microM) but not by low doses of RO 31-8220 (0.1-1.0 microM), suggesting the involvement of atypical protein kinase C. ENC1 was detected in both nucleus and cytoplasm that was increased by LH/hCG treatment. Both biochemical and morphological analysis revealed that LH/hCG treatment increased actin polymerization within 3 h in granulosa cells. Interestingly, ENC1 physically associated with actin and treatment with cytochalasin D, an actin-depolymerizing agent, abolished this association. Confocal microscopy further demonstrated the colocalization of ENC1 with filamentous actin (F-actin). The present study demonstrates that LH/hCG stimulates ENC1 expression and increases F-actin formation in granulosa cells. The present study further shows the physical association of ENC1 and F-actin, implicating the role of ENC1 in cytoskeletal reorganization during the differentiation of granulosa cells.


Assuntos
Actinas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Neuropeptídeos/metabolismo , Proteínas Nucleares/metabolismo , Ovário/efeitos dos fármacos , Ovário/metabolismo , Animais , Northern Blotting , Western Blotting , Células Cultivadas , Gonadotropina Coriônica/farmacologia , Inibidores Enzimáticos/farmacologia , Feminino , Imunofluorescência , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Imunoprecipitação , Hibridização In Situ , Técnicas In Vitro , Indóis/farmacologia , Hormônio Luteinizante/farmacologia , Proteínas dos Microfilamentos/genética , Neuropeptídeos/genética , Proteínas Nucleares/genética , Ligação Proteica , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Ratos , Ratos Sprague-Dawley , Substâncias para o Controle da Reprodução/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...